Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(11): 113524, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461541

RESUMEN

The Gamma Ray Imager (GRI) is a pinhole camera providing 2D imaging of MeV hard x-ray (HXR) bremsstrahlung emission from runaway electrons (REs) over the poloidal cross section of the DIII-D tokamak. We report a series of upgrades to the GRI expanding the access to RE scenarios from the diagnosis of a trace amount of REs to high flux HXR measurements during the RE plateau phase. We present the implementation of novel gamma ray detectors based on LYSO and YAP crystals coupled to multi-pixel photon counters, enabling a count rate in excess of 1 MHz. Finally, we highlight new insights into the RE physics discovered during the current quench and RE plateau phase experiments as the result of these upgrades.

2.
Phys Rev Lett ; 127(2): 025001, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296897

RESUMEN

A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvénic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in ∼0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature ≳10 keV and high-ß plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfvén continuum caused by the compressibility of ions with reactor-relevant ion temperature.

3.
Phys Rev Lett ; 122(6): 065001, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822084

RESUMEN

The first rapid tokamak discharge shutdown using dispersive core payload deposition with shell pellets has been achieved in the DIII-D tokamak. Shell pellets are being investigated as a possible new path toward achieving tokamak disruption mitigation with both low conducted wall heat loads and slow current quench. Conventional disruption mitigation injects radiating impurities into the outer edge of the tokamak plasma, which tends to result in poor impurity assimilation and creates a strong edge cooling and outward heat flow, thus requiring undesirable high-Z impurities to achieve low conducted heat loads. The shell pellet technique aims to produce a hollow temperature profile by using a thin, low-ablation shell surrounding a dispersive payload, giving a greatly increased impurity ablation (and radiation) rate when the payload is released in the plasma core. This principle was demonstrated successfully using 3.6 mm outer diameter, 40 µm thickness diamond shells holding boron powder. The pellets caused rapid (<10 ms) discharge shutdown with low conducted divertor heat fluence (∼0.1 MJ/m^{2}). Confirmation of massive release of the boron powder payload into the plasma core was obtained spectroscopically. Some evidence for the formation of a hollow temperature profile during the shutdown was observed. These first results open a new avenue for disruption mitigation research, hopefully enabling development of highly effective methods of avoiding disruption wall damage in future reactor-scale tokamaks.

4.
Phys Rev Lett ; 118(25): 255002, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696735

RESUMEN

Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature and reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation of HXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.

5.
Rev Sci Instrum ; 87(11): 11E602, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910457

RESUMEN

A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

6.
Rev Sci Instrum ; 87(4): 043507, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27131674

RESUMEN

A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...